

Silicon Tracking for Plug Electrons

Erik Brubaker
UC Berkeley/LBNL

CDF Week June 1, 2001

Plug Electron Identification

Why do plug electron ID using silicon?

• Plug has large acceptance for important physics processes...

... and in contrast to calorimeteronly electron ID, algorithms using tracking info give you:

Detector n Maximum (nele = 1 or more)

- charge information
- rejection of fakes

Plug electron ID options using silicon:

- 1. Silicon stand-alone tracking -> match tracks with plug EM clusters
- 2. Silicon stub algorithm developed in run I by Fan Qun & Arie Bodek.

- -- intended for high-pT, isolated electrons.
- -- advantages include greater speed, simplicity, eta reach, efficiency.

Stub finding algorithm

- Upstream:
 - Do EM, showermax clustering
 - > Run RegionDefModule
 - Creates detector region seeded from an EmCluster.
 - Run SiClusteringModule
 - Does silicon clustering in region.
- Loop through all combinations of r-phi hits in the eight layers of silicon, fit with a fast circle fitter.
 - After each fit, check residuals, discard bad hits.
 - Cut on min number of hits (4), max d₀
 (50 microns).
 - Exhaustive method of fitting all combinations is simple, made possible by looking only at hits in region.
- Finally, "clean up" phase selects best stubs with no shared hits.

Variables: Δφ/Δφ_{exp}

 $\Delta \phi_{exp}$ calculated from E_t of EmCluster.

$$\Delta\phi_{exp}\!\,\sim\,\,1/E$$

$$\Delta \phi \propto 1/p$$

 $\therefore \Delta \phi / \Delta \phi_{\rm exp} \propto E/p$

Single positron MC sample

Single positron MC sample

Single positron MC sample

Z->ee MC sample

Z->ee MC sample

Crude efficiency plots

- Efficiency = (Number of CdfEmObjects with silicon stub found)
 (Total number of CdfEmObjects)
- Caveat: No tweaking of region size, algorithm parameters, etc.

Conclusion

- Silicon stub algorithm can complement other electron ID methods in run II as in run I.
- Still some work to do on the algorithm:
 - Straight line fitting for eta > 2?
 - Add information from COT hits when available.
 - Improve Et calculation.
 - Look at fake rate in various physics samples, min bias.
 - Understand effect of material in forward region.
- Once we graduate from monte carlo and understand how it behaves with real data ... can be used in a level 3 plug electron filter?